Search results for "Plga microspheres"

showing 2 items of 2 documents

Emulsion-based synthesis of PLGA-microspheres for the in vitro expansion of porcine chondrocytes.

2007

Abstract The in vitro cell expansion of autologous chondrocytes is of high interest in regenerative medicine since these cells can be used to treat joint cartilage defects. In order to preserve chondrocyte phenotype, while optimizing adhesion on microspheres, several processing parameters for the microsphere synthesis were varied. In this study three different polylactide-co-glycolides were used with differing lactide–glycolide ratios (85:15 and 50:50) and differing inherent viscosities. An emulsion route was established, where the polymer was dissolved in chloroform and then injected into a stirred polyvinyl alcohol–water solution at different polymer concentrations and different stirring …

Morphology (linguistics)PolymersSurface PropertiesSwinePlga microspheresBioengineeringBiocompatible MaterialsTimechemistry.chemical_compoundChondrocytesPolylactic Acid-Polyglycolic Acid CopolymerCell AdhesionAnimalsLactic AcidParticle SizeMolecular BiologyCells Culturedchemistry.chemical_classificationChloroformWaterPolymerAdhesionHydrogen-Ion ConcentrationIn vitroMicrosphereschemistryVital stainPolyvinyl AlcoholEmulsionEmulsionsPolyglycolic AcidBiotechnologyBiomedical engineeringBiomolecular engineering
researchProduct

Facile and efficient chemical functionalization of aliphatic polyesters by cross metathesis

2016

International audience; An effective preparation of new tailor-made macromolecular materials via a combination of two (atom-efficient) catalytic transformations is reported. First, new aliphatic polyesters with alternated composition have been prepared using a salen aluminum catalyst system. Next, the pendant vinyl moieties in those copolymers have been selectively transformed into various functional groups by metathesis in the presence of homogeneous Grubbs catalysts. The latter metathesis reaction has been optimized in terms of catalytic activity and selectivity, to define the conditions for an effective and safe procedure that does not affect the macromolecular architecture. All polymer …

plga microspheresphosphate-buffered solutionin-vivo degradationPolymers and PlasticsBioengineeringmolecular-weight poly(l-lactide)010402 general chemistryMetathesis01 natural sciencesBiochemistry[ CHIM ] Chemical SciencesCatalysisacid) microspheresCopolymerSalt metathesis reactionenzymatic degradation[CHIM]Chemical SciencesOrganic chemistryRing-opening metathesis polymerisationcyclic anhydrides010405 organic chemistryChemistryring-opening copolymerizationOrganic Chemistryrenewable resources0104 chemical sciencesPolyester[ CHIM.POLY ] Chemical Sciences/Polymers[CHIM.POLY]Chemical Sciences/Polymersbiodegradable polymersSelectivityAcyclic diene metathesis
researchProduct